class: center, middle, inverse, title-slide .title[ # Decision tools from index fund finance to explore the path towards a scenario of renewable energy generation with globalization and high specialization of regional electricity markets ] .author[ ### Orlando Joaqui-Barandica
|
Diego F. Manotas-Duque
|
Jorge M. Uribe ] .date[ ###
8° ELAEE 2022
BOGOTÁ, COLOMBIA ] --- class: clear .pull-left[ .center[ <br><br> <img src="img/logos.png" width="75%" /> ] ] .pull-right[ .center[ <img style="border-radius: 50%;" src="img/avatar.png" width="100px" href="https://www.joaquibarandica.com" /> [Orlando Joaqui-Barandica, M.Sc.](https://www.joaquibarandica.com) <br/> Universidad del Valle ] .center[ <img style="border-radius: 50%;" src="img/avatar2.PNG" width="100px" /> [Diego F. Manotas-Duque, Ph.D.](http://industrial.univalle.edu.co/profesores/diego-fernando-manotas-duque) <br> Universidad del Valle ] .center[ <img style="border-radius: 50%;" src="img/avatar3.PNG" width="100px" /> [Jorge M. Uribe, Ph.D.](https://jorgemuribe.com/) <br> Universitat Oberta de Catalunya ] ] ??? Buenas tardes, el día de hoy socializaré mi propuesta de investigación doctoral en tópicos de activos y pasivos: una visión comparativa entre economías emergentes y desarrolladas. Esta propuesta doctoral está bajo la dirección del profesor Diego Manotas de la Escuela de Ing. Industrial de la Universidad del Valle. Y el profesor Jorge M. Uribe de la Universitat Oberta de Catalunya.. Este trabajo de investigación está integrado al grupo de investigación GIFINC de la Esc. de Ing. Ind. --- name: Motivation class: inverse, mline, center, middle # Motivation ??? --- <div class="my-logo-right"></div> # Motivation .pull-left-narrow[ <br> <br> <br> .center[ ### Three fundamental characteristics of future energy markets are: ] ] .pull-right-wide[ .font110[.left[ <br> <br> > - Almost all electricity will be generated by variable renewable energy technologies (VRE) such as wind turbines and solar cells, and by hydropower sources. <hr> > - Further transnational integration of energy markets will be required with the aim of diversifying the climate and weather risk. <hr> > - Energy storage, especially green hydrogen technologies, will play a critical role. ] ] ] --- <div class="my-logo-right"></div> # Motivation <br> .left[ .font170[Literature has extensively explored `portfolio optimization techniques` similar to those developed from a capital allocation perspective in finance... ] ] <br> .right[ .font170[...to construct an optimal generation mix of electricity that consists of different renewable energy technologies `(wind, sun, hydro)` and diverse geographical locations to conduct the energy transformation. ] ] --- name: Motivation class: inverse, center, middle # We consider a different although <br> # related problem .center[
] ??? --- <div class="my-logo-right"></div> # Motivation <br> .pull-left-narrow[ <br> <br> .center[
] ] .pull-right-wide[ .font120[ > We provide a way for a government to decide, in a globalized market of electricity: - Which firms (and power plants) should be ideally preserved (and encourage) in case that specialization dictates concentrating the national generation efforts on a fixed number of firms (or a few locations), and therefore, on fewer power plants than those already in operation. ] ] <hr> <br> <img src="img/figura6.png" width="70%" style="display: block; margin: auto;" /> --- name: Methodology class: inverse, mline, center, middle # Methodology and Data ??? --- <div class="my-logo-right"></div> # Optimization model .pull-left[ >
<i class="fas fa-angle-double-right faa-passing animated "></i>
We perform an optimization using the correlation matrix of observed weather configurations and progressively reducing the number of power plants that better preserve the actual weather/climate risk configuration. <br> `$$ρ_{ij}: \text{Correlation between plant i and plant j}$$` `$$x_{ij} = \left\{\begin{matrix} 1 & \text{if j is the most similar plant} \\ & \text{in the optimal portfolio} \\ 0 & otherwise \end{matrix}\right.$$` `$$y_{j} = \left\{\begin{matrix} 1 & \text{if the plant j is selected} \\ & \text{in the optimal portfolio} \\ 0 & otherwise \end{matrix}\right.$$` ] .pull-right[ Objective function `$$Z=Max\ \ \sum_{i=1}^{n}\sum_{j=1}^{n}{\rho_{ij}x_{ij}}$$` Subject to: - `$$\sum_{j=1}^{n}y_j=q$$` - `$$\sum_{j=1}^{n}x_{ij}=1\ \ \ \ \ \ \ \ \ \ \ \ \ \ for\ i=1,\ \ldots,n$$` - `$$x_{ij}\le y_j$$` ] --- <div class="my-logo-right"></div> # Data .panelset[ .panel[.panel-name[Sources of energy generation] <div style="line-height:5%;"> <br> </div> <br>
Sources of energy generation in Argentina
Type
n = 106
MW = 16,746 *
Wind plants
38
16.3%
Solar plants
34
9.0%
Hydraulic plants
34
74.7%
*These plants represent an installed power capacity of more than 16,747 MW
<br> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
We select the country of Argentina and use 106 main power generation plants that use different production technologies associated with wind, solar and hydraulic sources. ] .panel[.panel-name[Georeferencing of the generation sources] <br> <img src="img/figura1.jpg" width="80%" style="display: block; margin: auto;" /> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
We extract for each coordinate according to its type of generation, information on wind speed at 2m, solar irradiation (JM/m2) and precipitation (mm). Climate information is extracted from 01/01/2000 to 01/01/2022 with a daily frequency. ] ] --- name: RyC class: inverse, mline, center, middle # Results and Conclusion ??? --- <div class="my-logo-right"></div> # Results <br> <img src="img/figura2.png" width="70%" style="display: block; margin: auto;" /> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
Distribution of the number of plants for each optimal portfolio. **Note:** The axis of the optimal portfolio represents the number q of plants specialized in preserving the correlation structure of the energy network. --- <div class="my-logo-right"></div> # Results <br> <img src="img/figura3.png" width="48%" style="display: block; margin: auto;" /> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
Geographic distribution of plants optimally selected. **Note:** We select some values of q to identify as our model achieves in diversifying climatic variability from a geographic perspective. --- <div class="my-logo-right"></div> # Results <br> <img src="img/figura4.png" width="65%" style="display: block; margin: auto;" /> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
Averages of the meteorological series. **Note:** This figure shows the behavior of all the climatic series associated with an optimal portfolio with *q=30*. We use this value of *q* to exemplify the climatic variability of each type of source. --- <div class="my-logo-right"></div> # Results <br> <img src="img/figura5.png" width="65%" style="display: block; margin: auto;" /> >
<i class="fas fa-angle-double-right faa-passing animated "></i>
12 months Moving average for meteorological series. **Note:** This figure shows some optimal portfolio for *q = 5, 30, 60, 100,* where each series is the moving average of the set of meteorological series by generate source. --- <div class="my-logo-right"></div> # Conclusion .left-column[ .font400[1.] <br> <br> <br> <br> .font400[2.] ] .right-column[ .font120[ > We adapt integer portfolio optimization tools from finance to show how a government can transit, if required, to a scenario of electricity generation based on renewable energy sources, and fewer power plants than those already operating in the country. <br> <hr> <br> > The main objective of the government is to preserve the configuration of weather risks, which is determinant for variable renewable energy technologies, as stable as possible during such a transition. ] ] ??? --- <div class="my-logo-right"></div> # Conclusion .left-column[ .font400[3.] <br> <br> <br> <br> .font400[4.] ] .right-column[ .font120[ > We resort to these fundamental weather factors and show that our model is able to provide the path that could be optimally transited during the transition to a more specialized electricity market in Argentina. <br> <hr> <br> > An extension would be to incorporate more than one country in the model, in order to directly target the problem of globalized markets, from a supranational perspective, instead of a restricted optimization problem that only concerns a single national unit. ] ] ??? --- class: inverse, mline, center, bottom <br> .pull-left[ <img src="img/qr-code.png" width="50%" style="display: block; margin: auto;" /> <br> <br> <br> .center[ www.joaquibarandica.com ] ] .pull-right[ <br> <br> <br> # Gracias !!! <br> <br> .font140[**|**]
<i class="fas fa-envelope faa-passing animated "></i>
orlando.joaqui@correounivalle.edu.co .font140[**|**]
<i class="fas fa-envelope faa-passing animated "></i>
diego.manotas@correounivalle.edu.co .font140[**|**]
<i class="fas fa-envelope faa-passing animated "></i>
juribeg@uoc.edu <br> <br> <br> <br> ] ???