class: inverse, left, bottom background-image: url("img/back1.jpg") background-size: cover # **Data Visualization in R** ---- ## **<br/> Data preparation & Tables** ### Orlando Joaqui-Barandica, PhD ### 2024 --- class: inverse, middle, center background-color: #C0392B <br><br> .center[ <img style="border-radius: 50%;" src="img/avatar.png" width="160px" href="https://www.joaquibarandica.com" /> ### [Orlando Joaqui-Barandica, PhD](https://www.joaquibarandica.com) <br/> ### Universidad del Valle ] <br> .center[ *PhD. in Engineering with emphasis in Engineering Industrial* *MSc. Applied Economics* *BSc. Statistic*
[www.joaquibarandica.com](https://www.joaquibarandica.com) ] --- .pull-left[ <br><br><br><br><br> <img src="img/gif1.gif" width="110%" /> ] <br><br> .pull-right[ .center[ # Orlando Joaqui-Barandica ### [www.joaquibarandica.com](https://www.joaquibarandica.com) `Statistician and Master in Applied Economics from Universidad del Valle. Ph.D. in Engineering with an emphasis in Industrial Engineering. Teaching and research experience in the area of Statistics, Econometrics and Quantitative Finance in different recognized universities in the region such as Universidad del Valle, Pontificia Universidad Javeriana de Cali and Universidad ICESI. Research lines: Applied Statistics, Applied Econometrics, Quantitative Finance, Asset-Liability Management.` ] ] --- name: menu background-image: url("img/back2.jpg") background-size: cover class: left, middle, inverse # Contenido ---- .pull-left[ ###
[Importing DATA](#Data) ###
[Cleaning DATA](#Clean) ] .pull-right[ ###
[Tablas](#Tablas) ###
[Introducción a ggplot2](#ggplot2) ] --- name: Data class: inverse, center, middle #
# Importing DATA ---- .right[ .bottom[ #### [
](#menu) ] ] --- name: Descriptivas class: inverse, center, middle #
# Estadísticas descriptivas ---- .right[ .bottom[ #### [
](#menu) ] ] --- #
Indicadores de tendencia central * Indicadores de tendencia central: Muestran hacia donde tienden la mayoría de los datos, un ejemplo es el promedio, que también se conoce como “el centro de gravedad de los datos”. * Los indicadores son: Promedio, Mediana y Moda. * Las funciones respectivas en R son: `mean()`, `median()`. R no dispone de una función en su paquete base (stats). Por lo cuál se utiliza el paquete `modeest` ``` r install.packages("modeest") library(modeest) mlv(runif(20), method = "mfv")[1] ## Genera el valor más frecuente ``` --- #
Indicadores de tendencia central Para el siguiente vector, calcule la media, mediana y moda ``` r x <- c(20,NA,10,15,NA,25,22,NA) mean(x,na.rm=T) median(x,na.rm=T) mlv(x, method = "mfv",na.rm=T)[1] ``` En el caso de variable cuantitativas continuas la moda corresponde a los valores alrededor de los cuales se produce la mayor concentración de los datos --- #
Indicadores de dispersión Suponga que se tienen tres grupos de personas con las siguientes estaturas: ``` r Grupo1 <- c(60, 100, 140, 180) Grupo2 <- c(100, 100, 140, 140) Grupo3 <- c(120, 120, 120, 120) ``` ``` r mean(Grupo1); mean(Grupo2); mean(Grupo3) var(Grupo1); var(Grupo2); var(Grupo3) sd(Grupo1); sd(Grupo2); sd(Grupo3) ``` Analice que dichos grupos tienen igual promedio pero su variabilidad es distinta. --- #
Coeficiente de variación Coeficiente de Variación: Ayuda a identificar si los datos son homogéneos o heterogéneos. Determinar si cierta media es consistente con cierta varianza. Su cálculo es: $$ CV(x) = \frac{ \sigma }{\bar{x}} * 100 $$ <br> **Ejercicio:** Genere una función que permita calcular el coeficiente de variación a los grupos anteriormente establecidos. ``` r cv<-function(Y){ (sd(Y)/mean(Y))*100 } x<-runif(20) cv(x) ``` --- #
Indicadores de posición * Los indicadores de posición que más se trabaja en el análisis descriptivo son los cuartiles, estos dividen la muestra ordenada en cuatro partes que contienen aproximadamente el mismo número de datos * La función en R sería `quantile()` * También se pueden calcular los percentiles. Por ejemplo: P80 A partir de que valor se encuentra el 80% de los datos. ``` r x<- rnorm(10000000) quantile(x,0.95) ``` --- #
Datos agrupados Sea la variable Ingreso en millones, conforme una tabla de frecuencias. Explore la función `table.freq()` de la librería `agricolae`. ``` r library(agricolae) Ingreso <- c(2, 1.5, 3, 2.2, 1, 1.2, 3, 4, 5, 1, 2) tbFreq <- table.freq(hist(Ingreso, plot=FALSE)) tbFreq ``` # Actividad Para la variable **edad** de los datos de `CovidMuestra`. Genere las estadísticas descriptivas y la tabla de frecuencias. *(Una vez identifique como cargar la base de datos)* --- #
Importar Data Antes de que pueda visualizar sus datos, debe ingresarlos en R. Esto implica importar los datos de una fuente externa y manejarlo en un formato útil. .pull-left[ R puede importar datos de casi cualquier fuente, incluidos archivos de texto, hojas de cálculo de Excel, paquetes estadísticos y sistemas de administración de bases de datos. Ilustraremos estas técnicas utilizando el conjunto de datos `Salaries`, que contiene los salarios académicos de 9 meses de profesores universitarios en una sola institución en 2008-2009. ### Archivos de texto * El paquete `readr` proporciona funciones para importar archivos de texto delimitados en marcos de datos R. * Recordar también la función de base `read.csv()` ] .pull-right[ ```r library(readr) # import data from a comma delimited file Salaries <- read_csv("salaries.csv") # import data from a tab delimited file Salaries <- read_tsv("salaries.txt") ``` Estas funciones asumen que la primera línea de datos contiene los nombres de las variables, los valores están separados por comas o tabulaciones, respectivamente, y que los datos faltantes están representados por espacios en blanco. ] --- #
Importar Data ### Hojas de cálculo de Excel .pull-left[ El paquete `readxl` puede importar datos de libros de Excel. Se admiten los formatos xls y xlsx. ---- ```r library(readxl) # import data from an Excel workbook Salaries <- read_excel("salaries.xlsx", sheet=1) ``` ---- Dado que los libros de trabajo pueden tener más de una hoja de trabajo, puede especificar la que desee con la opción `sheet`. El valor predeterminado es `sheet=1`. <br> > También se puede utilizar la función `read_xlsx()` ] .pull-right[ ``` ## rank discipline yrs.since.phd yrs.service sex salary ## 1 Prof B 19 18 Male 139750 ## 2 Prof B 20 16 Male 173200 ## 3 AsstProf B 4 3 Male 79750 ## 4 Prof B 45 39 Male 115000 ## 5 Prof B 40 41 Male 141500 ## 6 AssocProf B 6 6 Male 97000 ``` ] --- #
Importar Data ### Desde algún software .left-column[ El paquete `haven` proporciona funciones para importar datos de una variedad de paquetes estadísticos. .center[ <img src="https://haven.tidyverse.org/logo.png" width="150px"/> ] ] .right-column[ ---- ```r library(haven) # import data from Stata Salaries <- read_dta("salaries.dta") # import data from SPSS Salaries <- read_sav("salaries.sav") # import data from SAS Salaries <- read_sas("salaries.sas7bdat") ``` ---- ] --- #
Importar Data ### Desde algún software .pull-left[ La importación de datos de una base de datos requiere pasos adicionales. Dependiendo de la base de datos que contiene los datos, los siguientes paquetes pueden ayudar: * `RODBC` * `RMySQL` * `ROracle` * `RPostgreSQL` * `RSQLite` * `RMongo` En las versiones más recientes de **RStudio**, puede usar el panel Conexiones para acceder rápidamente a los datos almacenados en los sistemas de administración de bases de datos. ] .pull-right[ ---- ![](https://media.giphy.com/media/13HgwGsXF0aiGY/giphy.gif) ---- ] --- name: Clean class: inverse, center, middle #
# Cleaning DATA ---- .right[ .bottom[ #### [
](#menu) ] ] --- #
Cleaning DATA Los procesos de limpieza de los datos pueden ser la parte más lenta de cualquier análisis de datos. Los pasos más importantes se consideran a continuación. > Si bien existen muchos enfoques, los que usan los paquetes `dplyr` y `tidyr` son algunos de los más rápidos y fáciles de aprender. .pull-left[ .center[ ![](https://media.giphy.com/media/3ohs87VPYLrH0JoF8s/giphy.gif) Los ejemplos de esta sección utilizarán el conjunto de datos de `starwars` del paquete `dplyr`. El conjunto de datos proporciona descripciones de 87 caracteres del universo de Starwars en 13 variables. ] ] .pull-right[ |**Package** | **Function** | **Use** | |--------| -------- |-------- |dplyr | select | select variables/columns| |dplyr | filter | select observations/rows | |dplyr | mutate | transform or recode variables| |dplyr | summarize | summarize data| |dplyr | group_by | identify subgroups for further processing| |tidyr | gather | convert wide format dataset to long format| |tidyr | spread | convert long format dataset to wide format| ] --- #
Starwars ``` ## # A tibble: 25 × 14 ## name height mass hair_color skin_color eye_color birth_year sex gender ## <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr> ## 1 Luke Sk… 172 77 blond fair blue 19 male mascu… ## 2 C-3PO 167 75 <NA> gold yellow 112 none mascu… ## 3 R2-D2 96 32 <NA> white, bl… red 33 none mascu… ## 4 Darth V… 202 136 none white yellow 41.9 male mascu… ## 5 Leia Or… 150 49 brown light brown 19 fema… femin… ## 6 Owen La… 178 120 brown, gr… light blue 52 male mascu… ## 7 Beru Wh… 165 75 brown light blue 47 fema… femin… ## 8 R5-D4 97 32 <NA> white, red red NA none mascu… ## 9 Biggs D… 183 84 black light brown 24 male mascu… ## 10 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu… ## # ℹ 15 more rows ## # ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>, ## # vehicles <list>, starships <list> ``` --- #
Seleccionar variables La función `select` le permite limitar su conjunto de datos a variables específicas (columnas). ---- * Guardamos las variables: `name`, `height` y `gender` ```r newdata <- select(starwars, name, height, gender) ``` ---- * Guardamos las variables: `name`, y todas las variables entre `mass` y `species` ```r newdata <- select(starwars, name, mass:species) ``` ---- * Guardamos todas las variables, excepto `birth_year` y `gender` ```r newdata <- select(starwars, -birth_year, -gender) ``` ---- --- #
Filtrar observaciones La función `filter` le permite limitar su conjunto de datos a observaciones (filas) que cumplen un criterio específico. Se pueden combinar varios criterios con los símbolos `&` (Y) y `|` (O). ---- * Seleccionamos el género: `female` ```r newdata <- filter(starwars, sex == "female") ``` ---- * Seleccionar mujeres que son de Alderaan ```r newdata <- filter(starwars, sex == "female" & homeworld == "Alderaan") ``` ---- .pull-left[ 1. Seleccionar individuos que sean de Alderaan, Coruscant o Endor ➡️ ➡️ ➡️ 2. Lo anterior se puede escribir de manera más sucinta como ➡️ ➡️ ➡️ ] .pull-left[ ```r newdata <- filter(starwars, homeworld == "Alderaan" | homeworld == "Coruscant" | homeworld == "Endor") newdata <- filter(starwars, homeworld %in% c("Alderaan", "Coruscant", "Endor")) ``` ] --- #
Crear/Recodificar variables La función `mutate` le permite crear nuevas variables o transformar las existentes. * Convertir la altura en centímetros a pulgadas y la masa en kilogramos a libras. ```r newdata <- mutate(starwars, height = height * 0.394, mass = mass * 2.205) ``` ---- La función `ifelse` (parte de la base R) se puede utilizar para recodificar datos. El formato es `ifelse(test, return if TRUE, return if FALSE)` .left-column[ .center[ **Qué hacen los códigos siguientes? 🤔** ] ] .right-column[ ```r newdata <- mutate(starwars, heightcat = ifelse(height > 180, "tall", "short")) newdata <- mutate(starwars, eye_color = ifelse(eye_color %in% c("black", "blue", "brown"), eye_color,"other")) newdata <- mutate(starwars, height = ifelse(height < 75 | height > 200, NA, height)) ``` ] --- #
Crear/Recodificar variables En el análisis de datos, puede haber muchos casos en los que tenga que lidiar con valores perdidos, valores negativos o valores no precisos que están presentes en el conjunto de datos. Estos valores también pueden afectar el resultado del análisis. La función `replace` le permite reemplazar los valores falsos con valores apropiados. ```r replace(x, list, values) ``` * `x` vector que contiene los valores * `list` indica la posición del vector a reemplazar * `values` los valores de reemplazo ---- ```r df<- c('apple', 'orange','grape','banana') df ``` ``` ## [1] "apple" "orange" "grape" "banana" ``` ```r dy<-replace(df, 2,'blueberry') dy ``` ``` ## [1] "apple" "blueberry" "grape" "banana" ``` --- #
Summarize La función `summarize` se puede utilizar para reducir varios valores a un solo valor (como una media). A menudo se utiliza junto con la función `by_group` para calcular estadísticas por grupo. En el siguiente código, la opción `na.rm=TRUE` se usa para eliminar los valores faltantes antes de calcular las medias. <br> .pull-left[ ```r newdata <- summarize(starwars, mean_ht = mean(height, na.rm=TRUE), mean_mass = mean(mass, na.rm=TRUE)) ``` ] .pull-right[ ``` ## # A tibble: 1 × 2 ## mean_ht mean_mass ## <dbl> <dbl> ## 1 174. 97.3 ``` ] ---- <br> .pull-left[ ```r newdata <- group_by(starwars, gender) newdata <- summarize(newdata, mean_ht = mean(height, na.rm=TRUE), mean_wt = mean(mass, na.rm=TRUE)) ``` ] .pull-right[ ``` ## # A tibble: 3 × 3 ## gender mean_ht mean_wt ## <chr> <dbl> <dbl> ## 1 feminine 165. 54.7 ## 2 masculine 177. 106. ## 3 <NA> 181. 48 ``` ] --- #
Pipes Paquetes como `dplyr` y `tidyr` le permiten escribir su código en un formato compacto utilizando el `operador pipe` **%>%**. Aquí hay un ejemplo, * Código clásico ```r newdata <- filter(starwars, sex == "female") newdata <- group_by(newdata,species) newdata <- summarize(newdata, mean_ht = mean(height, na.rm = TRUE)) ``` ---- * Código con pipes ```r newdata <- starwars %>% filter(sex == "female") %>% group_by(species) %>% summarize(mean_ht = mean(height, na.rm = TRUE)) ``` --- #
Reshape (Reshape2) * **Wide:** Una tabla está en formato ancho cuando cada fila contiene un `ID` y cada columna expresa una característica de ese individuo. * **Long:** Una tabla está en formato largo cuando las características específicas de los individuos se expresan en una sola columna `variable` y estas representan un `value` en una sola columna. Es decir, los `ID` se repiten en las filas. .pull-left[ ### Wide ``` ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa ## 7 4.6 3.4 1.4 0.3 setosa ## 8 5.0 3.4 1.5 0.2 setosa ## 9 4.4 2.9 1.4 0.2 setosa ## 10 4.9 3.1 1.5 0.1 setosa ## 11 5.4 3.7 1.5 0.2 setosa ## 12 4.8 3.4 1.6 0.2 setosa ``` ] .pull-right[ ### Long .center[ ``` ## Species variable value ## 1 setosa Sepal.Length 5.1 ## 2 setosa Sepal.Length 4.9 ## 3 setosa Sepal.Length 4.7 ## 4 setosa Sepal.Length 4.6 ## 5 setosa Sepal.Length 5.0 ## 6 setosa Sepal.Length 5.4 ## 7 setosa Sepal.Length 4.6 ## 8 setosa Sepal.Length 5.0 ## 9 setosa Sepal.Length 4.4 ## 10 setosa Sepal.Length 4.9 ## 11 setosa Sepal.Length 5.4 ## 12 setosa Sepal.Length 4.8 ``` ] ] --- #
Reshape (Reshape2) La librería `Reshape2` con la función `melt` ayuda a convertir una tabla a formato long. El parámetro `id` permite especificar con base en que variable se quiere generar la transformación de la data. > `id = c("Var1","Var2",..)` Se puede especificar más de una variable. ### Long ```r library(reshape2) melt(iris,id="Species") ``` ``` ## Species variable value ## 1 setosa Sepal.Length 5.1 ## 2 setosa Sepal.Length 4.9 ## 3 setosa Sepal.Length 4.7 ## 4 setosa Sepal.Length 4.6 ## 5 setosa Sepal.Length 5.0 ## 6 setosa Sepal.Length 5.4 ## 7 setosa Sepal.Length 4.6 ## 8 setosa Sepal.Length 5.0 ## 9 setosa Sepal.Length 4.4 ## 10 setosa Sepal.Length 4.9 ``` --- #
Reshape (Reshape2) A partir del formato largo se puede pasar a distintos tipos de formatos no largos (o anchos) usando la función `dcast` ### Wide ```r library(reshape2) newdata<-gapminder::gapminder %>% select(country, continent, pop) dcast(newdata, country ~ continent) ``` .pull-left[ ``` ## # A tibble: 7 × 3 ## country continent pop ## <fct> <fct> <int> ## 1 Afghanistan Asia 31889923 ## 2 Albania Europe 3600523 ## 3 Algeria Africa 33333216 ## 4 Angola Africa 12420476 ## 5 Argentina Americas 40301927 ## 6 Australia Oceania 20434176 ## 7 Austria Europe 8199783 ``` ] .pull-right[ .center[ ``` ## country Africa Americas Asia Europe Oceania ## 1 Afghanistan NA NA 31889923 NA NA ## 2 Albania NA NA NA 3600523 NA ## 3 Algeria 33333216 NA NA NA NA ## 4 Angola 12420476 NA NA NA NA ## 5 Argentina NA 40301927 NA NA NA ## 6 Australia NA NA NA NA 20434176 ## 7 Austria NA NA NA 8199783 NA ## 8 Bahrain NA NA 708573 NA NA ## 9 Bangladesh NA NA 150448339 NA NA ``` ] ] --- #
Reshape (tidyr) La librería `tydir` también permite hacer el reshape a la tabla de datos. ### Long ```r library(tidyr) long_data <- gather(iris, key="variable", value="value", Species:Petal.Width) head(long_data,10) ``` ``` ## Sepal.Length Sepal.Width Petal.Length variable value ## 1 5.1 3.5 1.4 Species setosa ## 2 4.9 3.0 1.4 Species setosa ## 3 4.7 3.2 1.3 Species setosa ## 4 4.6 3.1 1.5 Species setosa ## 5 5.0 3.6 1.4 Species setosa ## 6 5.4 3.9 1.7 Species setosa ## 7 4.6 3.4 1.4 Species setosa ## 8 5.0 3.4 1.5 Species setosa ## 9 4.4 2.9 1.4 Species setosa ## 10 4.9 3.1 1.5 Species setosa ``` --- #
Reshape (tidyr) La librería `tydir` también permite hacer el reshape a la tabla de datos. ### Wide ```r newdata<-gapminder::gapminder %>% filter(year==2007) %>% select(country, continent, pop) library(tidyr) wide_data <- spread(newdata, continent, pop) head(wide_data,12) ``` ``` ## # A tibble: 6 × 6 ## country Africa Americas Asia Europe Oceania ## <fct> <int> <int> <int> <int> <int> ## 1 Afghanistan NA NA 31889923 NA NA ## 2 Albania NA NA NA 3600523 NA ## 3 Algeria 33333216 NA NA NA NA ## 4 Angola 12420476 NA NA NA NA ## 5 Argentina NA 40301927 NA NA NA ## 6 Australia NA NA NA NA 20434176 ``` --- #
Merge > Hacer un *merge* es unir dos conjuntos de datos por una o más columnas comunes. ### R base: función `merge()` ```r merge(df1, df2, by.x = "df1ColName", by.y = "df2ColName") ``` * No importa el orden del marco de datos 1 y el marco de datos 2, pero el primero se considera *X* y el segundo es *Y*. * Si las columnas por las que desea unirse no tienen el mismo nombre, debe indicarle a fusionar las columnas por las que desea unirse: `by.x` para el nombre de la columna del marco de datos *X*, y `by.y` para la *Y*. * También puede indicar fusionar si desea todas las filas, incluidas las que no coinciden, o solo las filas que coinciden, con los argumentos `all.x = TRUE` y `all.y = TRUE`. --- #
Merge > Hacer un *merge* es unir dos conjuntos de datos por una o más columnas comunes. ### dplyr: función `left_join()` .pull-left[ ```r left_join(x, y, by = c("df1ColName" = "df2ColName")) ``` * `left_join` Incluye todo lo que está a la izquierda (en *X*) y todas las filas que coinciden con el marco de datos derecho (*Y*). * Si las columnas de combinación tienen el mismo nombre, todo lo que necesita es `left_join(x, y)`. * También puede indicar fusionar si desea todas las filas, incluidas las que no coinciden, o solo las filas que coinciden, con los argumentos `all.x = TRUE` y `all.y = TRUE`. ] .pull-right[ .center[ <img src="img/left_join.png" width="70%" /> ] ] --- name: Actividad class: inverse background-color: #00081d # Actividad ---- .left-column[ ![](https://media.giphy.com/media/dVuyBgq2z5gVBkFtDc/giphy.gif) ![](https://media.giphy.com/media/dVuyBgq2z5gVBkFtDc/giphy.gif) ![](https://media.giphy.com/media/dVuyBgq2z5gVBkFtDc/giphy.gif) ] .right-column[ 1️⃣ Utilice los datos `CovidMuestra.xlsx`🦠, los cuales tienen una muestra de 1500 casos de covid. Puede entrar al repositorio del curso en el Github y descargarlos. Genere las siguientes estadísticas por grupo, tenga presente si debe recodificar valores: * Promedio de edad por departamento * Promedio de edad por sexo * Promedio de edad por departamento y sexo 2️⃣ Realizar lo mismo del punto 1, para la desviación estándar y mediana. ] --- name: Tablas class: inverse, center, middle #
# Tablas ---- .right[ .bottom[ #### [
](#menu) ] ] --- #
Tablas La visualización de datos en R es un tema enorme. No importa qué tan bueno sea su análisis de datos si no comunica sus resultados de manera efectiva. En la mayoría de los informes, **la comunicación de los resultados se realiza mediante una combinación de visualización de datos y tablas.** <br> > Inicialmente exploremos este tipo de visualización en: * default * kable * tibble * paged .left-column[ .center[ <img src="https://rubenfcasal.github.io/bookdown_intro/images/rmarkdown.png" width="150px"/> ] ] .right-column[ Las visualizaciones de estas tablas son generadas en salidas tipo `Rmarkdown` para una correcta visualización en formato PDF o HTML. ] --- #
Tablas *default* ```r print.data.frame( head(iris,20) ) ``` ``` ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3.0 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5.0 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa ## 7 4.6 3.4 1.4 0.3 setosa ## 8 5.0 3.4 1.5 0.2 setosa ## 9 4.4 2.9 1.4 0.2 setosa ## 10 4.9 3.1 1.5 0.1 setosa ## 11 5.4 3.7 1.5 0.2 setosa ## 12 4.8 3.4 1.6 0.2 setosa ## 13 4.8 3.0 1.4 0.1 setosa ## 14 4.3 3.0 1.1 0.1 setosa ## 15 5.8 4.0 1.2 0.2 setosa ## 16 5.7 4.4 1.5 0.4 setosa ## 17 5.4 3.9 1.3 0.4 setosa ## 18 5.1 3.5 1.4 0.3 setosa ## 19 5.7 3.8 1.7 0.3 setosa ## 20 5.1 3.8 1.5 0.3 setosa ``` --- #
Tablas *knitr::kable* ```r knitr::kable( head(iris,10) ) ``` | Sepal.Length| Sepal.Width| Petal.Length| Petal.Width|Species | |------------:|-----------:|------------:|-----------:|:-------| | 5.1| 3.5| 1.4| 0.2|setosa | | 4.9| 3.0| 1.4| 0.2|setosa | | 4.7| 3.2| 1.3| 0.2|setosa | | 4.6| 3.1| 1.5| 0.2|setosa | | 5.0| 3.6| 1.4| 0.2|setosa | | 5.4| 3.9| 1.7| 0.4|setosa | | 4.6| 3.4| 1.4| 0.3|setosa | | 5.0| 3.4| 1.5| 0.2|setosa | | 4.4| 2.9| 1.4| 0.2|setosa | | 4.9| 3.1| 1.5| 0.1|setosa | --- #
Tablas *tibble* ```r print(tbl_df(iris)) ``` ``` ## # A tibble: 150 × 5 ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## <dbl> <dbl> <dbl> <dbl> <fct> ## 1 5.1 3.5 1.4 0.2 setosa ## 2 4.9 3 1.4 0.2 setosa ## 3 4.7 3.2 1.3 0.2 setosa ## 4 4.6 3.1 1.5 0.2 setosa ## 5 5 3.6 1.4 0.2 setosa ## 6 5.4 3.9 1.7 0.4 setosa ## 7 4.6 3.4 1.4 0.3 setosa ## 8 5 3.4 1.5 0.2 setosa ## 9 4.4 2.9 1.4 0.2 setosa ## 10 4.9 3.1 1.5 0.1 setosa ## # ℹ 140 more rows ``` --- #
Tablas *paged* ```r rmarkdown::paged_table(iris) ``` <div data-pagedtable="false"> <script data-pagedtable-source type="application/json"> {"columns":[{"label":["Sepal.Length"],"name":[1],"type":["dbl"],"align":["right"]},{"label":["Sepal.Width"],"name":[2],"type":["dbl"],"align":["right"]},{"label":["Petal.Length"],"name":[3],"type":["dbl"],"align":["right"]},{"label":["Petal.Width"],"name":[4],"type":["dbl"],"align":["right"]},{"label":["Species"],"name":[5],"type":["fct"],"align":["left"]}],"data":[{"1":"5.1","2":"3.5","3":"1.4","4":"0.2","5":"setosa"},{"1":"4.9","2":"3.0","3":"1.4","4":"0.2","5":"setosa"},{"1":"4.7","2":"3.2","3":"1.3","4":"0.2","5":"setosa"},{"1":"4.6","2":"3.1","3":"1.5","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.6","3":"1.4","4":"0.2","5":"setosa"},{"1":"5.4","2":"3.9","3":"1.7","4":"0.4","5":"setosa"},{"1":"4.6","2":"3.4","3":"1.4","4":"0.3","5":"setosa"},{"1":"5.0","2":"3.4","3":"1.5","4":"0.2","5":"setosa"},{"1":"4.4","2":"2.9","3":"1.4","4":"0.2","5":"setosa"},{"1":"4.9","2":"3.1","3":"1.5","4":"0.1","5":"setosa"},{"1":"5.4","2":"3.7","3":"1.5","4":"0.2","5":"setosa"},{"1":"4.8","2":"3.4","3":"1.6","4":"0.2","5":"setosa"},{"1":"4.8","2":"3.0","3":"1.4","4":"0.1","5":"setosa"},{"1":"4.3","2":"3.0","3":"1.1","4":"0.1","5":"setosa"},{"1":"5.8","2":"4.0","3":"1.2","4":"0.2","5":"setosa"},{"1":"5.7","2":"4.4","3":"1.5","4":"0.4","5":"setosa"},{"1":"5.4","2":"3.9","3":"1.3","4":"0.4","5":"setosa"},{"1":"5.1","2":"3.5","3":"1.4","4":"0.3","5":"setosa"},{"1":"5.7","2":"3.8","3":"1.7","4":"0.3","5":"setosa"},{"1":"5.1","2":"3.8","3":"1.5","4":"0.3","5":"setosa"},{"1":"5.4","2":"3.4","3":"1.7","4":"0.2","5":"setosa"},{"1":"5.1","2":"3.7","3":"1.5","4":"0.4","5":"setosa"},{"1":"4.6","2":"3.6","3":"1.0","4":"0.2","5":"setosa"},{"1":"5.1","2":"3.3","3":"1.7","4":"0.5","5":"setosa"},{"1":"4.8","2":"3.4","3":"1.9","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.0","3":"1.6","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.4","3":"1.6","4":"0.4","5":"setosa"},{"1":"5.2","2":"3.5","3":"1.5","4":"0.2","5":"setosa"},{"1":"5.2","2":"3.4","3":"1.4","4":"0.2","5":"setosa"},{"1":"4.7","2":"3.2","3":"1.6","4":"0.2","5":"setosa"},{"1":"4.8","2":"3.1","3":"1.6","4":"0.2","5":"setosa"},{"1":"5.4","2":"3.4","3":"1.5","4":"0.4","5":"setosa"},{"1":"5.2","2":"4.1","3":"1.5","4":"0.1","5":"setosa"},{"1":"5.5","2":"4.2","3":"1.4","4":"0.2","5":"setosa"},{"1":"4.9","2":"3.1","3":"1.5","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.2","3":"1.2","4":"0.2","5":"setosa"},{"1":"5.5","2":"3.5","3":"1.3","4":"0.2","5":"setosa"},{"1":"4.9","2":"3.6","3":"1.4","4":"0.1","5":"setosa"},{"1":"4.4","2":"3.0","3":"1.3","4":"0.2","5":"setosa"},{"1":"5.1","2":"3.4","3":"1.5","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.5","3":"1.3","4":"0.3","5":"setosa"},{"1":"4.5","2":"2.3","3":"1.3","4":"0.3","5":"setosa"},{"1":"4.4","2":"3.2","3":"1.3","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.5","3":"1.6","4":"0.6","5":"setosa"},{"1":"5.1","2":"3.8","3":"1.9","4":"0.4","5":"setosa"},{"1":"4.8","2":"3.0","3":"1.4","4":"0.3","5":"setosa"},{"1":"5.1","2":"3.8","3":"1.6","4":"0.2","5":"setosa"},{"1":"4.6","2":"3.2","3":"1.4","4":"0.2","5":"setosa"},{"1":"5.3","2":"3.7","3":"1.5","4":"0.2","5":"setosa"},{"1":"5.0","2":"3.3","3":"1.4","4":"0.2","5":"setosa"},{"1":"7.0","2":"3.2","3":"4.7","4":"1.4","5":"versicolor"},{"1":"6.4","2":"3.2","3":"4.5","4":"1.5","5":"versicolor"},{"1":"6.9","2":"3.1","3":"4.9","4":"1.5","5":"versicolor"},{"1":"5.5","2":"2.3","3":"4.0","4":"1.3","5":"versicolor"},{"1":"6.5","2":"2.8","3":"4.6","4":"1.5","5":"versicolor"},{"1":"5.7","2":"2.8","3":"4.5","4":"1.3","5":"versicolor"},{"1":"6.3","2":"3.3","3":"4.7","4":"1.6","5":"versicolor"},{"1":"4.9","2":"2.4","3":"3.3","4":"1.0","5":"versicolor"},{"1":"6.6","2":"2.9","3":"4.6","4":"1.3","5":"versicolor"},{"1":"5.2","2":"2.7","3":"3.9","4":"1.4","5":"versicolor"},{"1":"5.0","2":"2.0","3":"3.5","4":"1.0","5":"versicolor"},{"1":"5.9","2":"3.0","3":"4.2","4":"1.5","5":"versicolor"},{"1":"6.0","2":"2.2","3":"4.0","4":"1.0","5":"versicolor"},{"1":"6.1","2":"2.9","3":"4.7","4":"1.4","5":"versicolor"},{"1":"5.6","2":"2.9","3":"3.6","4":"1.3","5":"versicolor"},{"1":"6.7","2":"3.1","3":"4.4","4":"1.4","5":"versicolor"},{"1":"5.6","2":"3.0","3":"4.5","4":"1.5","5":"versicolor"},{"1":"5.8","2":"2.7","3":"4.1","4":"1.0","5":"versicolor"},{"1":"6.2","2":"2.2","3":"4.5","4":"1.5","5":"versicolor"},{"1":"5.6","2":"2.5","3":"3.9","4":"1.1","5":"versicolor"},{"1":"5.9","2":"3.2","3":"4.8","4":"1.8","5":"versicolor"},{"1":"6.1","2":"2.8","3":"4.0","4":"1.3","5":"versicolor"},{"1":"6.3","2":"2.5","3":"4.9","4":"1.5","5":"versicolor"},{"1":"6.1","2":"2.8","3":"4.7","4":"1.2","5":"versicolor"},{"1":"6.4","2":"2.9","3":"4.3","4":"1.3","5":"versicolor"},{"1":"6.6","2":"3.0","3":"4.4","4":"1.4","5":"versicolor"},{"1":"6.8","2":"2.8","3":"4.8","4":"1.4","5":"versicolor"},{"1":"6.7","2":"3.0","3":"5.0","4":"1.7","5":"versicolor"},{"1":"6.0","2":"2.9","3":"4.5","4":"1.5","5":"versicolor"},{"1":"5.7","2":"2.6","3":"3.5","4":"1.0","5":"versicolor"},{"1":"5.5","2":"2.4","3":"3.8","4":"1.1","5":"versicolor"},{"1":"5.5","2":"2.4","3":"3.7","4":"1.0","5":"versicolor"},{"1":"5.8","2":"2.7","3":"3.9","4":"1.2","5":"versicolor"},{"1":"6.0","2":"2.7","3":"5.1","4":"1.6","5":"versicolor"},{"1":"5.4","2":"3.0","3":"4.5","4":"1.5","5":"versicolor"},{"1":"6.0","2":"3.4","3":"4.5","4":"1.6","5":"versicolor"},{"1":"6.7","2":"3.1","3":"4.7","4":"1.5","5":"versicolor"},{"1":"6.3","2":"2.3","3":"4.4","4":"1.3","5":"versicolor"},{"1":"5.6","2":"3.0","3":"4.1","4":"1.3","5":"versicolor"},{"1":"5.5","2":"2.5","3":"4.0","4":"1.3","5":"versicolor"},{"1":"5.5","2":"2.6","3":"4.4","4":"1.2","5":"versicolor"},{"1":"6.1","2":"3.0","3":"4.6","4":"1.4","5":"versicolor"},{"1":"5.8","2":"2.6","3":"4.0","4":"1.2","5":"versicolor"},{"1":"5.0","2":"2.3","3":"3.3","4":"1.0","5":"versicolor"},{"1":"5.6","2":"2.7","3":"4.2","4":"1.3","5":"versicolor"},{"1":"5.7","2":"3.0","3":"4.2","4":"1.2","5":"versicolor"},{"1":"5.7","2":"2.9","3":"4.2","4":"1.3","5":"versicolor"},{"1":"6.2","2":"2.9","3":"4.3","4":"1.3","5":"versicolor"},{"1":"5.1","2":"2.5","3":"3.0","4":"1.1","5":"versicolor"},{"1":"5.7","2":"2.8","3":"4.1","4":"1.3","5":"versicolor"},{"1":"6.3","2":"3.3","3":"6.0","4":"2.5","5":"virginica"},{"1":"5.8","2":"2.7","3":"5.1","4":"1.9","5":"virginica"},{"1":"7.1","2":"3.0","3":"5.9","4":"2.1","5":"virginica"},{"1":"6.3","2":"2.9","3":"5.6","4":"1.8","5":"virginica"},{"1":"6.5","2":"3.0","3":"5.8","4":"2.2","5":"virginica"},{"1":"7.6","2":"3.0","3":"6.6","4":"2.1","5":"virginica"},{"1":"4.9","2":"2.5","3":"4.5","4":"1.7","5":"virginica"},{"1":"7.3","2":"2.9","3":"6.3","4":"1.8","5":"virginica"},{"1":"6.7","2":"2.5","3":"5.8","4":"1.8","5":"virginica"},{"1":"7.2","2":"3.6","3":"6.1","4":"2.5","5":"virginica"},{"1":"6.5","2":"3.2","3":"5.1","4":"2.0","5":"virginica"},{"1":"6.4","2":"2.7","3":"5.3","4":"1.9","5":"virginica"},{"1":"6.8","2":"3.0","3":"5.5","4":"2.1","5":"virginica"},{"1":"5.7","2":"2.5","3":"5.0","4":"2.0","5":"virginica"},{"1":"5.8","2":"2.8","3":"5.1","4":"2.4","5":"virginica"},{"1":"6.4","2":"3.2","3":"5.3","4":"2.3","5":"virginica"},{"1":"6.5","2":"3.0","3":"5.5","4":"1.8","5":"virginica"},{"1":"7.7","2":"3.8","3":"6.7","4":"2.2","5":"virginica"},{"1":"7.7","2":"2.6","3":"6.9","4":"2.3","5":"virginica"},{"1":"6.0","2":"2.2","3":"5.0","4":"1.5","5":"virginica"},{"1":"6.9","2":"3.2","3":"5.7","4":"2.3","5":"virginica"},{"1":"5.6","2":"2.8","3":"4.9","4":"2.0","5":"virginica"},{"1":"7.7","2":"2.8","3":"6.7","4":"2.0","5":"virginica"},{"1":"6.3","2":"2.7","3":"4.9","4":"1.8","5":"virginica"},{"1":"6.7","2":"3.3","3":"5.7","4":"2.1","5":"virginica"},{"1":"7.2","2":"3.2","3":"6.0","4":"1.8","5":"virginica"},{"1":"6.2","2":"2.8","3":"4.8","4":"1.8","5":"virginica"},{"1":"6.1","2":"3.0","3":"4.9","4":"1.8","5":"virginica"},{"1":"6.4","2":"2.8","3":"5.6","4":"2.1","5":"virginica"},{"1":"7.2","2":"3.0","3":"5.8","4":"1.6","5":"virginica"},{"1":"7.4","2":"2.8","3":"6.1","4":"1.9","5":"virginica"},{"1":"7.9","2":"3.8","3":"6.4","4":"2.0","5":"virginica"},{"1":"6.4","2":"2.8","3":"5.6","4":"2.2","5":"virginica"},{"1":"6.3","2":"2.8","3":"5.1","4":"1.5","5":"virginica"},{"1":"6.1","2":"2.6","3":"5.6","4":"1.4","5":"virginica"},{"1":"7.7","2":"3.0","3":"6.1","4":"2.3","5":"virginica"},{"1":"6.3","2":"3.4","3":"5.6","4":"2.4","5":"virginica"},{"1":"6.4","2":"3.1","3":"5.5","4":"1.8","5":"virginica"},{"1":"6.0","2":"3.0","3":"4.8","4":"1.8","5":"virginica"},{"1":"6.9","2":"3.1","3":"5.4","4":"2.1","5":"virginica"},{"1":"6.7","2":"3.1","3":"5.6","4":"2.4","5":"virginica"},{"1":"6.9","2":"3.1","3":"5.1","4":"2.3","5":"virginica"},{"1":"5.8","2":"2.7","3":"5.1","4":"1.9","5":"virginica"},{"1":"6.8","2":"3.2","3":"5.9","4":"2.3","5":"virginica"},{"1":"6.7","2":"3.3","3":"5.7","4":"2.5","5":"virginica"},{"1":"6.7","2":"3.0","3":"5.2","4":"2.3","5":"virginica"},{"1":"6.3","2":"2.5","3":"5.0","4":"1.9","5":"virginica"},{"1":"6.5","2":"3.0","3":"5.2","4":"2.0","5":"virginica"},{"1":"6.2","2":"3.4","3":"5.4","4":"2.3","5":"virginica"},{"1":"5.9","2":"3.0","3":"5.1","4":"1.8","5":"virginica"}],"options":{"columns":{"min":{},"max":[10]},"rows":{"min":[10],"max":[10]},"pages":{}}} </script> </div> --- #
Tablas *gt* .pull-left[ ```r library(gt) library(tidyverse) iris %>% head(11) %>% gt() %>% tab_header( title = "Base de datos IRIS", subtitle = "Diplomado en gestión de datos" ) ``` ] .pull-right[
Base de datos IRIS
Diplomado en gestión de datos
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
Species
5.1
3.5
1.4
0.2
setosa
4.9
3.0
1.4
0.2
setosa
4.7
3.2
1.3
0.2
setosa
4.6
3.1
1.5
0.2
setosa
5.0
3.6
1.4
0.2
setosa
5.4
3.9
1.7
0.4
setosa
4.6
3.4
1.4
0.3
setosa
5.0
3.4
1.5
0.2
setosa
4.4
2.9
1.4
0.2
setosa
4.9
3.1
1.5
0.1
setosa
5.4
3.7
1.5
0.2
setosa
] --- #
Tablas *gt* .scroll-box-10[ ```r library(gt) library(tidyverse) library(glue) # Define the start and end dates for the data range start_date <- "2010-06-07" end_date <- "2010-06-14" # Create a gt table based on preprocessed # `sp500` table data sp500 %>% filter(date >= start_date & date <= end_date) %>% select(-adj_close) %>% gt() %>% tab_header( title = "S&P 500", subtitle = glue::glue("{start_date} to {end_date}") ) %>% fmt_date( columns = date, date_style = 3 ) %>% fmt_currency( columns = c(open, high, low, close), currency = "USD" ) %>% fmt_number( columns = volume, suffixing = TRUE ) ``` ]
S&P 500
2010-06-07 to 2010-06-14
date
open
high
low
close
volume
lun., jun. 14, 2010
$1,095.00
$1,105.91
$1,089.03
$1,089.63
4.43B
vie., jun. 11, 2010
$1,082.65
$1,092.25
$1,077.12
$1,091.60
4.06B
jue., jun. 10, 2010
$1,058.77
$1,087.85
$1,058.77
$1,086.84
5.14B
mié., jun. 9, 2010
$1,062.75
$1,077.74
$1,052.25
$1,055.69
5.98B
mar., jun. 8, 2010
$1,050.81
$1,063.15
$1,042.17
$1,062.00
6.19B
lun., jun. 7, 2010
$1,065.84
$1,071.36
$1,049.86
$1,050.47
5.47B
--- #
Tablas *kable + kableExtra* .scroll-box-10[ ```r library(knitr) library(kableExtra) airquality %>% kable(format = "html", row.names = TRUE) %>% kable_styling(full_width = T, font_size = 15) %>% column_spec(column = 2, bold = TRUE) %>% # columns must be specified by number column_spec(column = 5, width = "5cm") %>% row_spec(row = 0, color = "#660033") %>% # row = 0 allows us to format the header row_spec(row = 2, italic = TRUE) %>% row_spec(row = 3, color = "#104e8b", background = "#d3d3d3") %>% row_spec(row = 4, monospace = TRUE) %>% row_spec(row = 5, underline = TRUE) %>% row_spec(row = 6, strikeout = TRUE) %>% scroll_box(height = "200px") ``` ] <br> <div style="border: 1px solid #ddd; padding: 0px; overflow-y: scroll; height:200px; "><table class="table" style="font-size: 15px; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Ozone </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Solar.R </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Wind </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Temp </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Month </th> <th style="text-align:right;color: #660033 !important;position: sticky; top:0; background-color: #FFFFFF;"> Day </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> 1 </td> <td style="text-align:right;font-weight: bold;"> 41 </td> <td style="text-align:right;"> 190 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 67 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;font-style: italic;"> 2 </td> <td style="text-align:right;font-weight: bold;font-style: italic;"> 36 </td> <td style="text-align:right;font-style: italic;"> 118 </td> <td style="text-align:right;font-style: italic;"> 8.0 </td> <td style="text-align:right;width: 5cm; font-style: italic;"> 72 </td> <td style="text-align:right;font-style: italic;"> 5 </td> <td style="text-align:right;font-style: italic;"> 2 </td> </tr> <tr> <td style="text-align:left;color: #104e8b !important;background-color: #d3d3d3 !important;"> 3 </td> <td style="text-align:right;font-weight: bold;color: #104e8b !important;background-color: #d3d3d3 !important;"> 12 </td> <td style="text-align:right;color: #104e8b !important;background-color: #d3d3d3 !important;"> 149 </td> <td style="text-align:right;color: #104e8b !important;background-color: #d3d3d3 !important;"> 12.6 </td> <td style="text-align:right;width: 5cm; color: #104e8b !important;background-color: #d3d3d3 !important;"> 74 </td> <td style="text-align:right;color: #104e8b !important;background-color: #d3d3d3 !important;"> 5 </td> <td style="text-align:right;color: #104e8b !important;background-color: #d3d3d3 !important;"> 3 </td> </tr> <tr> <td style="text-align:left;font-family: monospace;"> 4 </td> <td style="text-align:right;font-weight: bold;font-family: monospace;"> 18 </td> <td style="text-align:right;font-family: monospace;"> 313 </td> <td style="text-align:right;font-family: monospace;"> 11.5 </td> <td style="text-align:right;width: 5cm; font-family: monospace;"> 62 </td> <td style="text-align:right;font-family: monospace;"> 5 </td> <td style="text-align:right;font-family: monospace;"> 4 </td> </tr> <tr> <td style="text-align:left;text-decoration: underline;"> 5 </td> <td style="text-align:right;font-weight: bold;text-decoration: underline;"> NA </td> <td style="text-align:right;text-decoration: underline;"> NA </td> <td style="text-align:right;text-decoration: underline;"> 14.3 </td> <td style="text-align:right;width: 5cm; text-decoration: underline;"> 56 </td> <td style="text-align:right;text-decoration: underline;"> 5 </td> <td style="text-align:right;text-decoration: underline;"> 5 </td> </tr> <tr> <td style="text-align:left;text-decoration: line-through;"> 6 </td> <td style="text-align:right;font-weight: bold;text-decoration: line-through;"> 28 </td> <td style="text-align:right;text-decoration: line-through;"> NA </td> <td style="text-align:right;text-decoration: line-through;"> 14.9 </td> <td style="text-align:right;width: 5cm; text-decoration: line-through;"> 66 </td> <td style="text-align:right;text-decoration: line-through;"> 5 </td> <td style="text-align:right;text-decoration: line-through;"> 6 </td> </tr> <tr> <td style="text-align:left;"> 7 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 299 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 65 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:left;"> 8 </td> <td style="text-align:right;font-weight: bold;"> 19 </td> <td style="text-align:right;"> 99 </td> <td style="text-align:right;"> 13.8 </td> <td style="text-align:right;width: 5cm; "> 59 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:left;"> 9 </td> <td style="text-align:right;font-weight: bold;"> 8 </td> <td style="text-align:right;"> 19 </td> <td style="text-align:right;"> 20.1 </td> <td style="text-align:right;width: 5cm; "> 61 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 9 </td> </tr> <tr> <td style="text-align:left;"> 10 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 194 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 69 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:left;"> 11 </td> <td style="text-align:right;font-weight: bold;"> 7 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 74 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 11 </td> </tr> <tr> <td style="text-align:left;"> 12 </td> <td style="text-align:right;font-weight: bold;"> 16 </td> <td style="text-align:right;"> 256 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 69 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:left;"> 13 </td> <td style="text-align:right;font-weight: bold;"> 11 </td> <td style="text-align:right;"> 290 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 66 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:left;"> 14 </td> <td style="text-align:right;font-weight: bold;"> 14 </td> <td style="text-align:right;"> 274 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 68 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:left;"> 15 </td> <td style="text-align:right;font-weight: bold;"> 18 </td> <td style="text-align:right;"> 65 </td> <td style="text-align:right;"> 13.2 </td> <td style="text-align:right;width: 5cm; "> 58 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:left;"> 16 </td> <td style="text-align:right;font-weight: bold;"> 14 </td> <td style="text-align:right;"> 334 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 64 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:left;"> 17 </td> <td style="text-align:right;font-weight: bold;"> 34 </td> <td style="text-align:right;"> 307 </td> <td style="text-align:right;"> 12.0 </td> <td style="text-align:right;width: 5cm; "> 66 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:left;"> 18 </td> <td style="text-align:right;font-weight: bold;"> 6 </td> <td style="text-align:right;"> 78 </td> <td style="text-align:right;"> 18.4 </td> <td style="text-align:right;width: 5cm; "> 57 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 18 </td> </tr> <tr> <td style="text-align:left;"> 19 </td> <td style="text-align:right;font-weight: bold;"> 30 </td> <td style="text-align:right;"> 322 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 68 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 19 </td> </tr> <tr> <td style="text-align:left;"> 20 </td> <td style="text-align:right;font-weight: bold;"> 11 </td> <td style="text-align:right;"> 44 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 62 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 20 </td> </tr> <tr> <td style="text-align:left;"> 21 </td> <td style="text-align:right;font-weight: bold;"> 1 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 59 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 21 </td> </tr> <tr> <td style="text-align:left;"> 22 </td> <td style="text-align:right;font-weight: bold;"> 11 </td> <td style="text-align:right;"> 320 </td> <td style="text-align:right;"> 16.6 </td> <td style="text-align:right;width: 5cm; "> 73 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 22 </td> </tr> <tr> <td style="text-align:left;"> 23 </td> <td style="text-align:right;font-weight: bold;"> 4 </td> <td style="text-align:right;"> 25 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 61 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 23 </td> </tr> <tr> <td style="text-align:left;"> 24 </td> <td style="text-align:right;font-weight: bold;"> 32 </td> <td style="text-align:right;"> 92 </td> <td style="text-align:right;"> 12.0 </td> <td style="text-align:right;width: 5cm; "> 61 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 24 </td> </tr> <tr> <td style="text-align:left;"> 25 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 66 </td> <td style="text-align:right;"> 16.6 </td> <td style="text-align:right;width: 5cm; "> 57 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 25 </td> </tr> <tr> <td style="text-align:left;"> 26 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 266 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 58 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 26 </td> </tr> <tr> <td style="text-align:left;"> 27 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 57 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 27 </td> </tr> <tr> <td style="text-align:left;"> 28 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 13 </td> <td style="text-align:right;"> 12.0 </td> <td style="text-align:right;width: 5cm; "> 67 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 28 </td> </tr> <tr> <td style="text-align:left;"> 29 </td> <td style="text-align:right;font-weight: bold;"> 45 </td> <td style="text-align:right;"> 252 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 29 </td> </tr> <tr> <td style="text-align:left;"> 30 </td> <td style="text-align:right;font-weight: bold;"> 115 </td> <td style="text-align:right;"> 223 </td> <td style="text-align:right;"> 5.7 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 30 </td> </tr> <tr> <td style="text-align:left;"> 31 </td> <td style="text-align:right;font-weight: bold;"> 37 </td> <td style="text-align:right;"> 279 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 5 </td> <td style="text-align:right;"> 31 </td> </tr> <tr> <td style="text-align:left;"> 32 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 286 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;"> 33 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 287 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 74 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:left;"> 34 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 242 </td> <td style="text-align:right;"> 16.1 </td> <td style="text-align:right;width: 5cm; "> 67 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:left;"> 35 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 186 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 84 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:left;"> 36 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 220 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 85 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 5 </td> </tr> <tr> <td style="text-align:left;"> 37 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 264 </td> <td style="text-align:right;"> 14.3 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 6 </td> </tr> <tr> <td style="text-align:left;"> 38 </td> <td style="text-align:right;font-weight: bold;"> 29 </td> <td style="text-align:right;"> 127 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:left;"> 39 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 273 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 87 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:left;"> 40 </td> <td style="text-align:right;font-weight: bold;"> 71 </td> <td style="text-align:right;"> 291 </td> <td style="text-align:right;"> 13.8 </td> <td style="text-align:right;width: 5cm; "> 90 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 9 </td> </tr> <tr> <td style="text-align:left;"> 41 </td> <td style="text-align:right;font-weight: bold;"> 39 </td> <td style="text-align:right;"> 323 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 87 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:left;"> 42 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 259 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 93 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 11 </td> </tr> <tr> <td style="text-align:left;"> 43 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 250 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 92 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:left;"> 44 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 148 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:left;"> 45 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 332 </td> <td style="text-align:right;"> 13.8 </td> <td style="text-align:right;width: 5cm; "> 80 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:left;"> 46 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 322 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:left;"> 47 </td> <td style="text-align:right;font-weight: bold;"> 21 </td> <td style="text-align:right;"> 191 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:left;"> 48 </td> <td style="text-align:right;font-weight: bold;"> 37 </td> <td style="text-align:right;"> 284 </td> <td style="text-align:right;"> 20.7 </td> <td style="text-align:right;width: 5cm; "> 72 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:left;"> 49 </td> <td style="text-align:right;font-weight: bold;"> 20 </td> <td style="text-align:right;"> 37 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 65 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 18 </td> </tr> <tr> <td style="text-align:left;"> 50 </td> <td style="text-align:right;font-weight: bold;"> 12 </td> <td style="text-align:right;"> 120 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 73 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 19 </td> </tr> <tr> <td style="text-align:left;"> 51 </td> <td style="text-align:right;font-weight: bold;"> 13 </td> <td style="text-align:right;"> 137 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 20 </td> </tr> <tr> <td style="text-align:left;"> 52 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 150 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 21 </td> </tr> <tr> <td style="text-align:left;"> 53 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 59 </td> <td style="text-align:right;"> 1.7 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 22 </td> </tr> <tr> <td style="text-align:left;"> 54 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 91 </td> <td style="text-align:right;"> 4.6 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 23 </td> </tr> <tr> <td style="text-align:left;"> 55 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 250 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 24 </td> </tr> <tr> <td style="text-align:left;"> 56 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 135 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 75 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 25 </td> </tr> <tr> <td style="text-align:left;"> 57 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 127 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 26 </td> </tr> <tr> <td style="text-align:left;"> 58 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 47 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 73 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 27 </td> </tr> <tr> <td style="text-align:left;"> 59 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 98 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 80 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 28 </td> </tr> <tr> <td style="text-align:left;"> 60 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 31 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 29 </td> </tr> <tr> <td style="text-align:left;"> 61 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 138 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 83 </td> <td style="text-align:right;"> 6 </td> <td style="text-align:right;"> 30 </td> </tr> <tr> <td style="text-align:left;"> 62 </td> <td style="text-align:right;font-weight: bold;"> 135 </td> <td style="text-align:right;"> 269 </td> <td style="text-align:right;"> 4.1 </td> <td style="text-align:right;width: 5cm; "> 84 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;"> 63 </td> <td style="text-align:right;font-weight: bold;"> 49 </td> <td style="text-align:right;"> 248 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 85 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:left;"> 64 </td> <td style="text-align:right;font-weight: bold;"> 32 </td> <td style="text-align:right;"> 236 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:left;"> 65 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 101 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 84 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:left;"> 66 </td> <td style="text-align:right;font-weight: bold;"> 64 </td> <td style="text-align:right;"> 175 </td> <td style="text-align:right;"> 4.6 </td> <td style="text-align:right;width: 5cm; "> 83 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 5 </td> </tr> <tr> <td style="text-align:left;"> 67 </td> <td style="text-align:right;font-weight: bold;"> 40 </td> <td style="text-align:right;"> 314 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 83 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 6 </td> </tr> <tr> <td style="text-align:left;"> 68 </td> <td style="text-align:right;font-weight: bold;"> 77 </td> <td style="text-align:right;"> 276 </td> <td style="text-align:right;"> 5.1 </td> <td style="text-align:right;width: 5cm; "> 88 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:left;"> 69 </td> <td style="text-align:right;font-weight: bold;"> 97 </td> <td style="text-align:right;"> 267 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 92 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:left;"> 70 </td> <td style="text-align:right;font-weight: bold;"> 97 </td> <td style="text-align:right;"> 272 </td> <td style="text-align:right;"> 5.7 </td> <td style="text-align:right;width: 5cm; "> 92 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 9 </td> </tr> <tr> <td style="text-align:left;"> 71 </td> <td style="text-align:right;font-weight: bold;"> 85 </td> <td style="text-align:right;"> 175 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 89 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:left;"> 72 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 139 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 11 </td> </tr> <tr> <td style="text-align:left;"> 73 </td> <td style="text-align:right;font-weight: bold;"> 10 </td> <td style="text-align:right;"> 264 </td> <td style="text-align:right;"> 14.3 </td> <td style="text-align:right;width: 5cm; "> 73 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:left;"> 74 </td> <td style="text-align:right;font-weight: bold;"> 27 </td> <td style="text-align:right;"> 175 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:left;"> 75 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 291 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 91 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:left;"> 76 </td> <td style="text-align:right;font-weight: bold;"> 7 </td> <td style="text-align:right;"> 48 </td> <td style="text-align:right;"> 14.3 </td> <td style="text-align:right;width: 5cm; "> 80 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:left;"> 77 </td> <td style="text-align:right;font-weight: bold;"> 48 </td> <td style="text-align:right;"> 260 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:left;"> 78 </td> <td style="text-align:right;font-weight: bold;"> 35 </td> <td style="text-align:right;"> 274 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:left;"> 79 </td> <td style="text-align:right;font-weight: bold;"> 61 </td> <td style="text-align:right;"> 285 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 84 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 18 </td> </tr> <tr> <td style="text-align:left;"> 80 </td> <td style="text-align:right;font-weight: bold;"> 79 </td> <td style="text-align:right;"> 187 </td> <td style="text-align:right;"> 5.1 </td> <td style="text-align:right;width: 5cm; "> 87 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 19 </td> </tr> <tr> <td style="text-align:left;"> 81 </td> <td style="text-align:right;font-weight: bold;"> 63 </td> <td style="text-align:right;"> 220 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 85 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 20 </td> </tr> <tr> <td style="text-align:left;"> 82 </td> <td style="text-align:right;font-weight: bold;"> 16 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 74 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 21 </td> </tr> <tr> <td style="text-align:left;"> 83 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 258 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 22 </td> </tr> <tr> <td style="text-align:left;"> 84 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 295 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 23 </td> </tr> <tr> <td style="text-align:left;"> 85 </td> <td style="text-align:right;font-weight: bold;"> 80 </td> <td style="text-align:right;"> 294 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 24 </td> </tr> <tr> <td style="text-align:left;"> 86 </td> <td style="text-align:right;font-weight: bold;"> 108 </td> <td style="text-align:right;"> 223 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 85 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 25 </td> </tr> <tr> <td style="text-align:left;"> 87 </td> <td style="text-align:right;font-weight: bold;"> 20 </td> <td style="text-align:right;"> 81 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 26 </td> </tr> <tr> <td style="text-align:left;"> 88 </td> <td style="text-align:right;font-weight: bold;"> 52 </td> <td style="text-align:right;"> 82 </td> <td style="text-align:right;"> 12.0 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 27 </td> </tr> <tr> <td style="text-align:left;"> 89 </td> <td style="text-align:right;font-weight: bold;"> 82 </td> <td style="text-align:right;"> 213 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 88 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 28 </td> </tr> <tr> <td style="text-align:left;"> 90 </td> <td style="text-align:right;font-weight: bold;"> 50 </td> <td style="text-align:right;"> 275 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 29 </td> </tr> <tr> <td style="text-align:left;"> 91 </td> <td style="text-align:right;font-weight: bold;"> 64 </td> <td style="text-align:right;"> 253 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 83 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 30 </td> </tr> <tr> <td style="text-align:left;"> 92 </td> <td style="text-align:right;font-weight: bold;"> 59 </td> <td style="text-align:right;"> 254 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 7 </td> <td style="text-align:right;"> 31 </td> </tr> <tr> <td style="text-align:left;"> 93 </td> <td style="text-align:right;font-weight: bold;"> 39 </td> <td style="text-align:right;"> 83 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;"> 94 </td> <td style="text-align:right;font-weight: bold;"> 9 </td> <td style="text-align:right;"> 24 </td> <td style="text-align:right;"> 13.8 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:left;"> 95 </td> <td style="text-align:right;font-weight: bold;"> 16 </td> <td style="text-align:right;"> 77 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:left;"> 96 </td> <td style="text-align:right;font-weight: bold;"> 78 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:left;"> 97 </td> <td style="text-align:right;font-weight: bold;"> 35 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 85 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 5 </td> </tr> <tr> <td style="text-align:left;"> 98 </td> <td style="text-align:right;font-weight: bold;"> 66 </td> <td style="text-align:right;"> NA </td> <td style="text-align:right;"> 4.6 </td> <td style="text-align:right;width: 5cm; "> 87 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 6 </td> </tr> <tr> <td style="text-align:left;"> 99 </td> <td style="text-align:right;font-weight: bold;"> 122 </td> <td style="text-align:right;"> 255 </td> <td style="text-align:right;"> 4.0 </td> <td style="text-align:right;width: 5cm; "> 89 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:left;"> 100 </td> <td style="text-align:right;font-weight: bold;"> 89 </td> <td style="text-align:right;"> 229 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 90 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:left;"> 101 </td> <td style="text-align:right;font-weight: bold;"> 110 </td> <td style="text-align:right;"> 207 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 90 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 9 </td> </tr> <tr> <td style="text-align:left;"> 102 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 222 </td> <td style="text-align:right;"> 8.6 </td> <td style="text-align:right;width: 5cm; "> 92 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:left;"> 103 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 137 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 11 </td> </tr> <tr> <td style="text-align:left;"> 104 </td> <td style="text-align:right;font-weight: bold;"> 44 </td> <td style="text-align:right;"> 192 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:left;"> 105 </td> <td style="text-align:right;font-weight: bold;"> 28 </td> <td style="text-align:right;"> 273 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:left;"> 106 </td> <td style="text-align:right;font-weight: bold;"> 65 </td> <td style="text-align:right;"> 157 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 80 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:left;"> 107 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 64 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:left;"> 108 </td> <td style="text-align:right;font-weight: bold;"> 22 </td> <td style="text-align:right;"> 71 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:left;"> 109 </td> <td style="text-align:right;font-weight: bold;"> 59 </td> <td style="text-align:right;"> 51 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:left;"> 110 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 115 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 18 </td> </tr> <tr> <td style="text-align:left;"> 111 </td> <td style="text-align:right;font-weight: bold;"> 31 </td> <td style="text-align:right;"> 244 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 19 </td> </tr> <tr> <td style="text-align:left;"> 112 </td> <td style="text-align:right;font-weight: bold;"> 44 </td> <td style="text-align:right;"> 190 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 20 </td> </tr> <tr> <td style="text-align:left;"> 113 </td> <td style="text-align:right;font-weight: bold;"> 21 </td> <td style="text-align:right;"> 259 </td> <td style="text-align:right;"> 15.5 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 21 </td> </tr> <tr> <td style="text-align:left;"> 114 </td> <td style="text-align:right;font-weight: bold;"> 9 </td> <td style="text-align:right;"> 36 </td> <td style="text-align:right;"> 14.3 </td> <td style="text-align:right;width: 5cm; "> 72 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 22 </td> </tr> <tr> <td style="text-align:left;"> 115 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 255 </td> <td style="text-align:right;"> 12.6 </td> <td style="text-align:right;width: 5cm; "> 75 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 23 </td> </tr> <tr> <td style="text-align:left;"> 116 </td> <td style="text-align:right;font-weight: bold;"> 45 </td> <td style="text-align:right;"> 212 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 79 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 24 </td> </tr> <tr> <td style="text-align:left;"> 117 </td> <td style="text-align:right;font-weight: bold;"> 168 </td> <td style="text-align:right;"> 238 </td> <td style="text-align:right;"> 3.4 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 25 </td> </tr> <tr> <td style="text-align:left;"> 118 </td> <td style="text-align:right;font-weight: bold;"> 73 </td> <td style="text-align:right;"> 215 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 86 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 26 </td> </tr> <tr> <td style="text-align:left;"> 119 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 153 </td> <td style="text-align:right;"> 5.7 </td> <td style="text-align:right;width: 5cm; "> 88 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 27 </td> </tr> <tr> <td style="text-align:left;"> 120 </td> <td style="text-align:right;font-weight: bold;"> 76 </td> <td style="text-align:right;"> 203 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 97 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 28 </td> </tr> <tr> <td style="text-align:left;"> 121 </td> <td style="text-align:right;font-weight: bold;"> 118 </td> <td style="text-align:right;"> 225 </td> <td style="text-align:right;"> 2.3 </td> <td style="text-align:right;width: 5cm; "> 94 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 29 </td> </tr> <tr> <td style="text-align:left;"> 122 </td> <td style="text-align:right;font-weight: bold;"> 84 </td> <td style="text-align:right;"> 237 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 96 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 30 </td> </tr> <tr> <td style="text-align:left;"> 123 </td> <td style="text-align:right;font-weight: bold;"> 85 </td> <td style="text-align:right;"> 188 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 94 </td> <td style="text-align:right;"> 8 </td> <td style="text-align:right;"> 31 </td> </tr> <tr> <td style="text-align:left;"> 124 </td> <td style="text-align:right;font-weight: bold;"> 96 </td> <td style="text-align:right;"> 167 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 91 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 1 </td> </tr> <tr> <td style="text-align:left;"> 125 </td> <td style="text-align:right;font-weight: bold;"> 78 </td> <td style="text-align:right;"> 197 </td> <td style="text-align:right;"> 5.1 </td> <td style="text-align:right;width: 5cm; "> 92 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 2 </td> </tr> <tr> <td style="text-align:left;"> 126 </td> <td style="text-align:right;font-weight: bold;"> 73 </td> <td style="text-align:right;"> 183 </td> <td style="text-align:right;"> 2.8 </td> <td style="text-align:right;width: 5cm; "> 93 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 3 </td> </tr> <tr> <td style="text-align:left;"> 127 </td> <td style="text-align:right;font-weight: bold;"> 91 </td> <td style="text-align:right;"> 189 </td> <td style="text-align:right;"> 4.6 </td> <td style="text-align:right;width: 5cm; "> 93 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 4 </td> </tr> <tr> <td style="text-align:left;"> 128 </td> <td style="text-align:right;font-weight: bold;"> 47 </td> <td style="text-align:right;"> 95 </td> <td style="text-align:right;"> 7.4 </td> <td style="text-align:right;width: 5cm; "> 87 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 5 </td> </tr> <tr> <td style="text-align:left;"> 129 </td> <td style="text-align:right;font-weight: bold;"> 32 </td> <td style="text-align:right;"> 92 </td> <td style="text-align:right;"> 15.5 </td> <td style="text-align:right;width: 5cm; "> 84 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 6 </td> </tr> <tr> <td style="text-align:left;"> 130 </td> <td style="text-align:right;font-weight: bold;"> 20 </td> <td style="text-align:right;"> 252 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 80 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 7 </td> </tr> <tr> <td style="text-align:left;"> 131 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 220 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 8 </td> </tr> <tr> <td style="text-align:left;"> 132 </td> <td style="text-align:right;font-weight: bold;"> 21 </td> <td style="text-align:right;"> 230 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 75 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 9 </td> </tr> <tr> <td style="text-align:left;"> 133 </td> <td style="text-align:right;font-weight: bold;"> 24 </td> <td style="text-align:right;"> 259 </td> <td style="text-align:right;"> 9.7 </td> <td style="text-align:right;width: 5cm; "> 73 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 10 </td> </tr> <tr> <td style="text-align:left;"> 134 </td> <td style="text-align:right;font-weight: bold;"> 44 </td> <td style="text-align:right;"> 236 </td> <td style="text-align:right;"> 14.9 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 11 </td> </tr> <tr> <td style="text-align:left;"> 135 </td> <td style="text-align:right;font-weight: bold;"> 21 </td> <td style="text-align:right;"> 259 </td> <td style="text-align:right;"> 15.5 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 12 </td> </tr> <tr> <td style="text-align:left;"> 136 </td> <td style="text-align:right;font-weight: bold;"> 28 </td> <td style="text-align:right;"> 238 </td> <td style="text-align:right;"> 6.3 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 13 </td> </tr> <tr> <td style="text-align:left;"> 137 </td> <td style="text-align:right;font-weight: bold;"> 9 </td> <td style="text-align:right;"> 24 </td> <td style="text-align:right;"> 10.9 </td> <td style="text-align:right;width: 5cm; "> 71 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 14 </td> </tr> <tr> <td style="text-align:left;"> 138 </td> <td style="text-align:right;font-weight: bold;"> 13 </td> <td style="text-align:right;"> 112 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 71 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 15 </td> </tr> <tr> <td style="text-align:left;"> 139 </td> <td style="text-align:right;font-weight: bold;"> 46 </td> <td style="text-align:right;"> 237 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 78 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 16 </td> </tr> <tr> <td style="text-align:left;"> 140 </td> <td style="text-align:right;font-weight: bold;"> 18 </td> <td style="text-align:right;"> 224 </td> <td style="text-align:right;"> 13.8 </td> <td style="text-align:right;width: 5cm; "> 67 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 17 </td> </tr> <tr> <td style="text-align:left;"> 141 </td> <td style="text-align:right;font-weight: bold;"> 13 </td> <td style="text-align:right;"> 27 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 18 </td> </tr> <tr> <td style="text-align:left;"> 142 </td> <td style="text-align:right;font-weight: bold;"> 24 </td> <td style="text-align:right;"> 238 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 68 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 19 </td> </tr> <tr> <td style="text-align:left;"> 143 </td> <td style="text-align:right;font-weight: bold;"> 16 </td> <td style="text-align:right;"> 201 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 82 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 20 </td> </tr> <tr> <td style="text-align:left;"> 144 </td> <td style="text-align:right;font-weight: bold;"> 13 </td> <td style="text-align:right;"> 238 </td> <td style="text-align:right;"> 12.6 </td> <td style="text-align:right;width: 5cm; "> 64 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 21 </td> </tr> <tr> <td style="text-align:left;"> 145 </td> <td style="text-align:right;font-weight: bold;"> 23 </td> <td style="text-align:right;"> 14 </td> <td style="text-align:right;"> 9.2 </td> <td style="text-align:right;width: 5cm; "> 71 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 22 </td> </tr> <tr> <td style="text-align:left;"> 146 </td> <td style="text-align:right;font-weight: bold;"> 36 </td> <td style="text-align:right;"> 139 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 81 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 23 </td> </tr> <tr> <td style="text-align:left;"> 147 </td> <td style="text-align:right;font-weight: bold;"> 7 </td> <td style="text-align:right;"> 49 </td> <td style="text-align:right;"> 10.3 </td> <td style="text-align:right;width: 5cm; "> 69 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 24 </td> </tr> <tr> <td style="text-align:left;"> 148 </td> <td style="text-align:right;font-weight: bold;"> 14 </td> <td style="text-align:right;"> 20 </td> <td style="text-align:right;"> 16.6 </td> <td style="text-align:right;width: 5cm; "> 63 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 25 </td> </tr> <tr> <td style="text-align:left;"> 149 </td> <td style="text-align:right;font-weight: bold;"> 30 </td> <td style="text-align:right;"> 193 </td> <td style="text-align:right;"> 6.9 </td> <td style="text-align:right;width: 5cm; "> 70 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 26 </td> </tr> <tr> <td style="text-align:left;"> 150 </td> <td style="text-align:right;font-weight: bold;"> NA </td> <td style="text-align:right;"> 145 </td> <td style="text-align:right;"> 13.2 </td> <td style="text-align:right;width: 5cm; "> 77 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 27 </td> </tr> <tr> <td style="text-align:left;"> 151 </td> <td style="text-align:right;font-weight: bold;"> 14 </td> <td style="text-align:right;"> 191 </td> <td style="text-align:right;"> 14.3 </td> <td style="text-align:right;width: 5cm; "> 75 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 28 </td> </tr> <tr> <td style="text-align:left;"> 152 </td> <td style="text-align:right;font-weight: bold;"> 18 </td> <td style="text-align:right;"> 131 </td> <td style="text-align:right;"> 8.0 </td> <td style="text-align:right;width: 5cm; "> 76 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 29 </td> </tr> <tr> <td style="text-align:left;"> 153 </td> <td style="text-align:right;font-weight: bold;"> 20 </td> <td style="text-align:right;"> 223 </td> <td style="text-align:right;"> 11.5 </td> <td style="text-align:right;width: 5cm; "> 68 </td> <td style="text-align:right;"> 9 </td> <td style="text-align:right;"> 30 </td> </tr> </tbody> </table></div> --- #
Tablas *DT::datatable* ```r library(DT) datatable( head(iris)) ```
--- #
Tablas *reactable + sparkline* .scroll-box-10[ ```r library(sparkline) library(reactable) reactable( iris[1:20, ], defaultPageSize = 5, bordered = TRUE, defaultColDef = colDef(footer = function(values) { if (!is.numeric(values)) return() sparkline(values, type = "box", width = 100, height = 30) }) ) ``` ]
--- name: ggplot2 class: inverse, center, middle #
# Introducción a `ggplot2` ---- .right[ .bottom[ #### [
](#menu) ] ] --- #
Introducción a `ggplot2` **Las funciones del paquete de ggplot2 `library(ggplot2)` crean un gráfico en capas.** Construiremos un gráfico complejo comenzando con un gráfico simple y agregando elementos adicionales, uno a la vez. > Al construir un gráfico `ggplot2`, solo se requieren las dos primeras funciones que se describen a continuación. Las otras funciones son opcionales y pueden aparecer en cualquier orden. ### 1️⃣ ggplot(): *Siempre debe ser la primera función.* * `ggplot`: Contiene los datos que se trazarán. * `mapping`: Se genera el mapeo de las variables a las propiedades visuales del gráfico. Las asignaciones se colocan dentro de la función `aes` (donde **aes** significa estética). .pull-left[ ```r library(ggplot2) ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Petal.Length)) ``` .center[ El gráfico se encuentra vacío ya que no hemos declarado forma. Hemos declarado las variables a los ejes. ] ] .pull-right[ ![](2_Data_files/figure-html/unnamed-chunk-52-1.png)<!-- --> ] --- #
Introducción a `ggplot2` **Las funciones del paquete de ggplot2 `library(ggplot2)` crean un gráfico en capas.** Construiremos un gráfico complejo comenzando con un gráfico simple y agregando elementos adicionales, uno a la vez. > Al construir un gráfico `ggplot2`, solo se requieren las dos primeras funciones que se describen a continuación. Las otras funciones son opcionales y pueden aparecer en cualquier orden. ### 2️⃣ geoms(): *Siempre debe ser la segunda función.* * Los geoms son los objetos geométricos (puntos, líneas, barras, etc.) que se pueden colocar en un gráfico. Se agregan usando funciones que comienzan con `geom_`. Por ejemplo un gráfico de puntos tiene la forma geométrica `geom_point`. * Lass funciones se encadenan mediante el `+` signo para construir una trama final. .pull-left[ ```r library(ggplot2) ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Petal.Length))+ geom_point() ``` ] .pull-right[ ![](2_Data_files/figure-html/unnamed-chunk-54-1.png)<!-- --> ] --- #
Introducción a `ggplot2` ### themes * Podemos ajustar la apariencia del gráfico usando temas. Las funciones del tema (que comienzan con `theme_`) controlan los colores de fondo, las fuentes, las líneas de cuadrícula, la ubicación de las leyendas y otras características del gráfico no relacionadas con los datos. .pull-left[ ```r library(ggplot2) ggplot(data = iris, mapping = aes(x = Sepal.Length, y = Petal.Length))+ geom_point()+ theme_minimal() ``` Además de los `theme_` podemos tener múltiples características para mejorar nuestros gráficos, así como formas de contenido. Aquí podemos revisar el 🔗** [CHEAT SHEET de `ggplot2()`](https://www.maths.usyd.edu.au/u/UG/SM/STAT3022/r/current/Misc/data-visualization-2.1.pdf)** ] .pull-right[ ![](2_Data_files/figure-html/unnamed-chunk-56-1.png)<!-- --> ] --- class: inverse, center, middle background-color: #00081d .pull-left[ .center[ <br><br> # Gracias!!! <br><br><br><br><br> ### ¿Preguntas? ] ] .pull-right[ <img style="border-radius: 50%;" src="img/avatar.png" width="150px" /> ### [www.joaquibarandica.com](https://www.joaquibarandica.com)
jotajb5
juniorjb5
orlando.joaqui@correounivalle.edu.co ] <br><br><br> ---- *Las imágenes utilizadas para ambientar la presentación son de [pixabay](https://pixabay.com/).* Sources: [R for the Rest of Us](https://rfortherestofus.com/), Rob Kabacoff